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A FAST APPROXIMATION TO THE COMPLEMENTARY ERROR
FUNCTION FOR USE IN FIThNG GAMMA—RAY PEAKS

I. Introduction

The error function and its complement are widely used in fields

such as computational physics , numerical methods and statistical analy-

sis , and specifically in fitting gamma—ray peaks for quantitative
analysis of spectra from germanium detectors. All of these applications

make heavy use of computer calculations. Unfortunately these functions

tend to be relatively slow to calculate precisely on a digital computer.

In progra m RYPERMET (1) , which was developed at the Naval Research Labo-
ratory (NRL) for automatic peak analysis of gamma—ray spectra, the

complementary error function appears in several terms of the peak—shape
function which is used in an iterative least—squares fit to the peaks.
Timing studies shoved that the program was spending up to 80% of its

central processin g unit (cpu) time in the error—function routine. Since

high precision was not required in this application , a search was made
for a fast approximation to this function .

II. Computation
The error function erf(x) derive s its name as the integral of the

norma l curve of error ,

•rf(x) — e~~
2 

dt .

It is so norm alized to bav. a range of —l to +l for - r . i x~~~.. The
complementary error function is defined by

“ 2
•r tc(x) — (2//s) I e~~ dt

• 1. - .rf (x) ,

Note: Manuscript submitted V.bcu.ry 13, 1979.
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It thus has a range of 2 to 0 for — ~ x ~ — . On the Texas Instruments

ASC Model 7 computer at NRL , the double precision (8—bit exponent, 56—bit
mantissa) complementary error function is calculated (2) as follows:

1. For (0 ~ x ~ 1) an 11th order polynomial approximat ion P1( x)

is used.

2. Within the range (1 ~ x ~ 2.04) various 14th order polynomials

P2(x) are used.
3. Within the range (2.04 < x i 13.306) various functions of the

form e P3(l/x ) are used, where P3 is a 14th order

polynomial.

4. For (13.306 c x) the function underfiows and is set to 0.
5. For (x < 0) the following relation is used.

.rfc(x) - 2 - erf c (-x)

Most non—linear least—squares optimization routines, including that used
in HYPERMET , require precis, derivatives . For the complementary error
function we have

(.rfc(x) ) • — (2/v’w)

III . Application

In the peak shape function used by HYPERI4ET, the main term is a

gaussian of width ~ and amplitud e r

fi (x) • r •xp (—x2/ 6 2) .

Added to this is an exponential “skew” term of amplitude a and slope B
p on the negative x aid. of the peak . When folded with a gaussian ,

representative of random electronic noise, this term can be written as

f2(x) • a .rp(x/B) cerf(x — x~
)

2
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where the function

cerf(x — x0) • (1/2) erf c (x/ 6  + 6/28)

has a range of 1 to 0 for (.~co i x i “) and serves to cut off the exponen-
tial part of f2 smoothly for large x. The second term in the argument of
erfc introduces an offset by x0 — — 62 /28. The derivative can be written

derf(x - x0) - ~~~~~ [cerf(x - x0)]

• — (l/6v’w) •xp [_(x/6 + 6/28)2].

The amplitude a of f2 is usually an order of magnitude less than the
amplitude r of fj, and the slope B is usually less than or of the order
of the gaussian width 6. When counting statistics are very good, it is

sometimes necessary, in order to obtain a good fit, to add a “tail” term

f3, functionally identical to f2 but with a slope an order of magnitude

larger, and a constant “step” term f~. Both f3 and f~ are an order of

magnitude less than f2 in amplitude, and both are also cut off for large
x by one—half the complementary error function. Because the offset term

in the argument of •rfc differs for f1 and f2 and is zero for f3, the
calculation of the function cerf and its derivative derf is required up

to three times at each data channel (corresponding to x) of the region

being fit and for each iteration of the fit.

IV. Approximation

Since the amplitudes of terms f2, f3 and f~, in which the complemen-
tary error function appears are small relative to the main gaussian term

f1, since the cutoff term cerf is very different from either I. or 0 only

for small absolute x (where f1 is large), and since the reasons given

for inclusion of this term in the peak—shape function are largely

empirical, a simpler approximat ion to c•rf should perform just as well
in the fit. (However, whichever approximation is used , its value and the
value of its derivative must be calculated precisely at each channel and

1
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for each iteration in order to avoid cumulative errors during the fitting
process.) Several approximations to the error function are given in

Ref. (3). The following was chosen a. sufficiently accurate and conve-
nient for this purpose: let ‘

cutf(x) — (b1t + b2t2 + b3t3) .xp (—z2)

for x ~ 0 and t — 1/(1 + px) . The constant p • 0.470 47 and the
polynomial coefficients are

b1 — 0.174 012 1

b2 — 0.047 939 9

— 0.373 927 8.

For x less than 0,

cutf(x) • 1. — cu tf (—x) .

If ~~ let

c.rf(x) - cutf(x) + c (x),

the magnitude of the error term is stated (3) as

k(x) I i 1.25 x

The exact derivative is given by

dutf(x) — .
~~~ -. (cutf(x))

• — (2x) outf(x)

— pt2(bi + 2tb2 + 3t2b3) .xp(—x

2).4
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V. Tests

The functions cutf and dutf were tested on the ASC 7 at NRL for
speed and accuracy against the functions cerf and derf . The ASC is a
two—pipe—line vector—oriented machine which in an overlapped fasion can
retrieve arrays of data , perform simple algebraic manipulations on the
arrays, and store the results. For arrays of length � 10, this is
usually much more efficient than the corresponding scalar operations on
the data element by element. Many of the standard mathematical functions

have both vector and scalar routines available for their calculation,

and the FORTRAN compiler is written so as to automatically invoke the

vector routines when applicable for processing expressions involving

arrays in the source code. Unfortunately, the comp].ementary error func-

tion is available only as a scalar routine.

For this test two routines (4) were written in FORTRAN to calculate

cutf and dutf for x varying between —5.0 and +4.9 in 100 steps of 0.1

each, which covers a range typical for program HYPERMET. One routine

was written to store intermediate results in arrays in order to compile
efficiently in vector code. The second routine was written to compile
efficiently in scalar code. A third program was written to calculate

cerf and d.rf for the same steps over the same range. Then the lower

and upper limits of the range of calculation were each incremented 100

times in steps of 0.01 and the calculations repeated , for a total of

10,000 calculations of each function. Finally, the above calculations

were repeated ten times for a grand total of 100,000 calculations of
each function. The source code was compiled and executed in double
precision at three different optional lev•ls of compiler optimization (5),

1. I—level, scatar code with dirsct translation of source
code, no optimization

2. .1—level, scaler code with local and global optimization F

3. K—level, vector code with local and global optimization.

VI. Accuracy

In Figs. 1 and 2 are plotted th. results of the calculation for
cutf and dut! and the errors

5
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epsc (x) — c e rf ( x)  — cutf(x)

•psd( x) - de rf ( x)  - d u tf ( x)
between x • 0.0 and 5.0.

For negative x, cutf(x) 1.0 — cutf(—x), while the other curves ‘

are symmetric about x’O. Over the range of 0 i x ~ 1.65, the error

curve epac oscillates between ± 1.10 x l0~~. The sign of the error is
indicated in parentheses and changes at each cusp in the curve as the
error passes through zero. For x > 1.65, epac declines gradually with

cut!. At x.’5 , cut! — 7.99 x 10—13 and epsc l — 3.08 x l0.1~ or about 4%.
Similar behavior is observed for the error ep ad in the derivative d u tf .

VII. Timing

Table 1 gives the cpu execution times for 100,000 fast—approximation

calculations of cutf and dutf in both the scaler— and vector—coded

versions compared to the times for the full calculation of cerf and derf,

all codes compiled and executed in double precision on the Texas Instru-

ments ASC 7 at NRL. Results are given for three different compiler levels

I, .1, and K as described previously. Table 1 shows significant savings

at all compiler levels, with a maximum savings at the K compiler level

for the vector—coded version of the fast approximation, which executes

in 23% of the time required for the full calculation. At the I and .1

levels, maximum savings are found for the scaler—coded version , which

executes in about 60% of the time required for the full calculation.

In ‘l able 2 the lines of code needed to calculate the derivatives

were deleted before compilation. Here the savings are similar at the K

level but smaller at the I and J levels. In fact, the vector—coded

version at the I level requires about 13% longer time to execute than
does the full calculation. This is somewhat surprising and apparently

represents the economy of an optimized assembly language code versus an

optimized FORTRAN—compiled cods. For the sca].ar code, this seems to

indicate that large savings can be realized by coding frequently used

functions in assembly language rather than FORTRAN

.6
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VIII. Results

In program HYPERMET, subroutine FUNC which calculates the peak—
shape function has been rewritten in order to produce efficient vector

code at the K—level of compiler optimization . This change resulted in a
reduction in execution t ime to about 40% of that required for the previous
version . The vector—coded fast approximation for the functions cutf and

dutf  was then added in—line at each of three locations, at the code for
calculating f1, f2 and f 3 where the functions cerf and derf had been used

previously. With this change another factor of two in execution speed

was achieved. As the final result of these changes, the program HYPERMET

now executes on the ASC 7 in about one—fifth the t ime required by the
previous version to analyze a typical gasma—ray spectrum.

IX. References

1. G.W. Phillips and K.W. Marlow , Nucl . Instrum. Methods
137 (1976) 525; NRL Memorandum Report 3198, January 1976 .

2. “ASC Mathematical Library,” Manual No. 929978—2 , Texas

Instruments, Austin, Texas, January 1977.

3. “Handbook of Mathematical Functions ,” Dover Publications ,
New York, 1965.

4. See Appendix for source listings.

5. “ASC FORTRAN Reference Manual,” Manual No. 930044—3,
Texas Instruments , Austin , Texas , January 1978.
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Table 1.

Complementary Error Function and Derivatives ,
Time (sec.) for 100,000 Calculations

Fast Approximation Full Calculation

Compiler Level Vector Code Scaler Code Scaler Code

I 7.23 5.63 8.82

J 5.50 5.04 8.49

K 1.35 2.86 5.95

Table 2.

Complementary Error Function Only
Time (sec.) for 100,000 Calculations

Fast Approximation Full Calculation

Compiler Level Vector Code Scaler Code Scaler Code

I 5.94 4.85 5.23

.1 4.66 4.41 5.10

K 1.19 1.40 
5.028
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Fig. 1 - Plot of the fast app roxiamt ion CUT? to the complemsntazy
• error function, end the error EPSC, as define d in the text . Plot-

ted is the log~~ of th. absolute value of the f unctions . Th. sign
is indicated ia parenth eses above th. curve . The cusps in the curve
for EPSC result from sign changes as the function passes through
zero .
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Fig. 2 - Plot of the derivative bUT? of the fast approxi~~tion
to the complementary error function CUT?, and the error EPSD
a. defined in the text. The sign is indicated in parentheses
above the curve • The cusps in h. curve for !PSD result from
sign change. as th. function pass.. through zero.
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APPENDIX

PROGRAM CUTFV
C PROGRAM FOR TIMING TESTS OF A RATIONAL APPROXIMATION TO THE
C COMPLEMENTARY ERROR FUNCTION CUT? AND ITS DERIVATIVE DUTF
C VECTOR CODED VERSION

• C
IMPLICIT REAL*8 (A—R,O—Z)
DIMENSION GAUSN(lOO) ,T3(lOO) ,Tl(l0O) ,T2(l0O) ,U(100)
DIMENSION CUTF(100) ,DU~~ (l0O)
DIMENSION FT(100) ,DFT(l00) ,DFX(l OO)
DATA Al/O. 1740121DOO/, A2/—0 .0479399D00/

• DATA A3/0.3739278D00/,AP/O.47047D00/
C

N— 100
DU—0 .O1DOO
DO 1000 KX— l,lO
DO 1000 IX—1,l0O

UO——5 . llDOO+DU*DFLOAT (IX)
DO 100 I—1,N

• U(I)—UO+0.1DOO*DFLOAT(I)
GAUSN(I)—DEXP(—U(I)**2)

100 CONTINUE
• K—IDINT(—U0*lO.)

DO 200 I—l ,K
U ( I)——U (I )

200 CONTINUE
DO 300 I—l ,N

T1(I)—l .DOO/(l .D00+AP*U(t))
T2(I)—T 1(I)*Tl(I)
T3(I)—Tl(I)*T2(I)
YT(I)—Al*Tl(I)+A2*T2(I)+A3*T3(I) •

DPT(t).’Al+2 .DOOaA2*Tl(I)+3 .DO0*A3*T2(I)
DFX(I)——D !’T(I)*AP*T2 (I)

300 CONTINUE
DO 400 I—l ,N

CUTF(I)—FT(I)*GAUSN(I)
DUTF (I )—DFX (I) *GAUSN (I) —2. DO0*U (I) *CUTF (I)

400 CONTINUE
DO 500 I—l ,K

500 CUTF(I)—l.DO0—cUTF(I)
1000 CONTINUE

• C
STOP

_

ll

_ 
_ _ _
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PROGRAM CUTYS
C PROGRAM FOR TIMING TESTS OF A RATIONAL APPROXIMATION TO THE
C COMPLEMENTARY ERROR FUNCTION CUT? AND ITS DERIVATIVE DUTF
C SCALAR CODED VERSION
C

IMPLICIT REAL*8(A—H,O—Z)
DIMENSION U(lOO)
DIMENSION CUTP(lOO) ,DUTF (100)
DATA Al/O. 174Ol21DOO/ ,A2/—O .0479399D00/
DATA A3/O. 3739278D00/ AP/O. 47047D00/

• C
N—lOO

• DU— 0.O1DOO
• DO 1000 KX—1,lO

DO 1000 IX— l,100
UO——5 . 11DOO+DU*DFLOAT(IX)
DO 100 I—l ,N

U(I)—UO+O..].DO0*DFLOAT(I)
UA’.DABS(U(I))
T—l . DO0/ (1. DOO+AP*UA)
HN—DEXP (—U (I) **2)• CUTP(I)—HN*T*(A 1+T*(A2+T*A3))
DUTP(I)——HN*AP*T*T*(Al+T*(2 .DOO*A2+T*3.DOO*A3))

* —2 .DOO*UA*CUT!(I)
100 CONTINUE

K—IDINT(U—UO*lO.)
DO 200 I—l ,K

200 CUT!(I)—l.DOO—CTJTF(I)
1000 CONTINUE

C
STOP
END

• • 
~~~~ 12
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PROGRAM CERF• C PROGRAM FOR TIMING TESTS OF THE ASC LIBRARY ROUTINE FOR THE
C COMPLEMENTARY ERROR FUNCTION CERP AND ITS DERIVATIVE DERP
C

IMPLICIT REAL*8 (A—H,O—Z)
DIMENSION U(100)
DIMENSION CERP(lOO) ,DERI(lOO)

C
RPI—O. 56418935DOO
N—lOO
DU—O • OlDOO
DO 1000 U—1,1O
DO 1000 IX—l,lOO

UO——5 . 11DOO+DU*DFLOAT(IX)
DO 100 11,N

• U(I)—UO+O . lDOO*DFLOAT(I)
CERP(I)—0.5D00*DERPC(U(I))

• 
• 

DERF(I)——RPI*DEXP(—U(I)**2)
100 CONTINUE
1000 CONTINUE

C
STOP

13


